Fraud Detection with Machine Learning on AWS

 

Creating a Fraud Detection System using Machine Learning on AWS involves multiple components — from data ingestion and preprocessing to model training, deployment, and real-time inference. Here's a high-level guide with the key services, architecture, and steps involved:


๐Ÿง  Use Case Overview: Fraud Detection

Fraud detection is a classification problem where the goal is to identify whether a transaction (or activity) is legitimate or fraudulent based on historical patterns.


๐Ÿ”ง Key AWS Services Involved

PurposeAWS Service
Data StorageAmazon S3
Data ProcessingAWS Glue / Amazon SageMaker Data Wrangler
Model Training & DeploymentAmazon SageMaker
Real-Time InferenceSageMaker Endpoint / Lambda
Monitoring & LoggingAmazon CloudWatch
AlertsAmazon SNS
OrchestrationAWS Step Functions or Lambda

๐Ÿ—️ High-Level Architecture

  1. Data Collection

    • Upload raw transaction data (CSV/JSON/parquet) to Amazon S3.

  2. Data Processing & Feature Engineering

    • Use AWS Glue or SageMaker Data Wrangler for cleaning, transformation, and feature engineering.

  3. Model Training

    • Train a classification model (e.g., XGBoost, Random Forest, or deep learning) using Amazon SageMaker.

    • Split data: train/validation/test.

  4. Model Evaluation

    • Evaluate metrics: Precision, Recall, F1 Score, AUC-ROC.

    • Tune hyperparameters via SageMaker Experiments.

  5. Model Deployment

    • Deploy using SageMaker Endpoint for real-time predictions or Batch Transform for batch jobs.

  6. Real-Time Inference

    • API Gateway + Lambda or direct app integration with SageMaker Endpoint.

  7. Monitoring & Alerting

    • Monitor using CloudWatch.

    • Trigger alerts using SNS for anomalies or model drift.


๐Ÿงช Sample Model: XGBoost on SageMaker

python
from sagemaker import Session from sagemaker.inputs import TrainingInput from sagemaker.xgboost.estimator import XGBoost session = Session() role = "arn:aws:iam::<your-account>:role/SageMakerExecutionRole" xgb = XGBoost(entry_point='train.py', framework_version='1.5-1', role=role, instance_count=1, instance_type='ml.m5.large', output_path='s3://your-bucket/output', sagemaker_session=session) xgb.fit({'train': TrainingInput('s3://your-bucket/train', content_type='csv'), 'validation': TrainingInput('s3://your-bucket/val', content_type='csv')})

Your train.py script would include:

  • Data loading

  • Preprocessing

  • Model training

  • Model saving using joblib/pickle


๐Ÿ“ˆ Real-Time Inference (Lambda Example)

python
import boto3 import json runtime = boto3.client('runtime.sagemaker') def lambda_handler(event, context): payload = json.dumps(event['data']) # transaction features response = runtime.invoke_endpoint(EndpointName='fraud-detector-endpoint', ContentType='application/json', Body=payload) result = json.loads(response['Body'].read().decode()) return {"is_fraud": bool(result[0] > 0.5)}

๐Ÿ“Š Monitoring & Alerting

  • Use CloudWatch to monitor:

    • Model latency

    • Invocation counts

    • Errors

  • Use Amazon SNS to send alerts to email/SMS on anomaly detection or spikes in fraud.


๐Ÿ“š Optional Enhancements

  • Auto retraining: Use Lambda + Step Functions to retrain model on new data periodically.

  • Drift detection: Monitor feature distributions over time.

  • Explainability: Integrate SHAP with SageMaker for model interpretability.


Comments

Popular posts from this blog

How to Repurpose Old Content for Better Engagement

Introduction to AWS for Data Science Beginners

Why Learn Full Stack Java?